Human intelligence has the remarkable ability to quickly adapt to new tasks and environments. Starting from a very young age, humans acquire new skills and learn how to solve new tasks either by imitating the behavior of others or by following provided natural language instructions. To facilitate research in this direction, we propose IGLU: Interactive Grounded Language Understanding in a Collaborative Environment. The primary goal of the competition is to approach the problem of how to build interactive agents that learn to solve a task while provided with grounded natural language instructions in a collaborative environment. Understanding the complexity of the challenge, we split it into sub-tasks to make it feasible for participants.
DOI: 10.48550/arXiv.2205.02388
Презентация с официального YouTube канала Microsoft Research (англ.):
Скачать PDF в репозитории arXiv (англ.): https://arxiv.org/pdf/2205.02388.pdf
ResearchGate (англ.): https://www.researchgate.net/publication/360410364_Interactive_Grounded_Language_Understanding_in_a_Collaborative_Environment_IGLU_2021
Julia Kiseleva, Ziming Li, Mohammad Aliannejadi, Shrestha Mohanty, Maartje ter Hoeve, Mikhail Burtsev, Alexey Skrynnik, Artem Zholus, Aleksandr Panov, Kavya Srinet, Arthur Szlam, Yuxuan Sun, Marc-Alexandre Côté, Katja Hofmann, Ahmed Awadallah, Linar Abdrazakov, Igor Churin, Putra Manggala, Kata Naszadi, Michiel van der Meer, Taewoon Kim. Interactive Grounded Language Understanding in a Collaborative Environment: IGLU 2021 // Proceedings of Machine Learning Research NeurIPS 2021 Competition and Demonstration Track:1–17, 2022.