Stationary solutions on a bounded interval for an initial-boundary value problem to Korteweg–de Vries and modified Korteweg–de Vries equation (for the last one both in focusing and defocusing cases) are constructed. The method of the study is based on the theory of conservative systems with one degree of freedom. The obtained solutions turn out to be periodic. Exact relations between the length of the interval and coefficients of the equations which are necessary and sufficient for the existence of nontrivial solutions are established.
DOI: 10.1007/978-3-319-32857-7_6
Скачать PDF в электронном архиве научных статей arXiv (англ.): https://arxiv.org/pdf/1509.09272.pdf
Web of Science: https://www.webofscience.com/wos/woscc/full-record/WOS:000391876600006?SID=E43EpK1xlN8xSZQw2e8
РИНЦ: https://www.elibrary.ru/item.asp?id=27566783&ysclid=l0t09v5pkm
Скачать PDF или читать онлайн на ResearchGate (англ.): https://www.researchgate.net/publication/282356648_On_stationary_solutions_of_KdV_and_mKdV_equations
A. V. Faminskii, A. A. Nikolaev. On stationary solutions of KdV and mKdV equations // Differential and Difference Equations with Applications, Springer Proceedings in Mathematics & Statistics, eds. S. Pinelas et al., Springer International Publishing Switzerland. 2016. Vol. 164. pp. 63–70.